Eukleidész
2015 03 26 184954uklidész (Alexandriai Eukleidész, görög betűkkel: Εὐκλείδης; régiesen: Euklidész; Kr. e. 300 körül született) görög matematikus, akit később a geometria atyjaként is emlegettek.

Platón akadémiáján tanult Athénben. Az alexandriai matematikai iskola megalapítója. Ő a híres ókori matematika(tan)könyv, az Elemek (Στοιχείa, Sztoikheia) szerzője, amelyben összefoglalta a matematika alapjait (euklideszi geometria).
Az Elemekben geometriai módszerekkel ugyan, de világosan leírja a két szám, vagy mennyiség legnagyobb közös osztójának megkeresésére (is) használt euklideszi algoritmust. Ezt a legtöbb tudománytörténész szerint a püthagoreusok fedezték fel, legalábbis biztos, hogy ismerték.

Az Elemekben a geometriai objektumok tulajdonságait viszonylag kis számú axiómából vezeti le, így a modern matematika axiomatikus módszerének úttörője (esetleg ihletője) volt. Egyéb művei a perspektíváról, kúpszeletekről, szférikus geometriáról szólnak. Születésének éve és helye, valamint halálának körülményei ismeretlenek.

Noha az Elemekben bemutatott eredmények nagy része más matematikusoktól származik, Eukleidész nagy érdeme, hogy egységes, logikailag összefüggő szerkezetben mutatta be őket. Azonkívül, hogy néhány hiányzó bizonyítást is elvégzett, Eukleidész szövege tartalmaz számelméleti valamint térmértani részeket is.

Az Elemekben bemutatott geometriai rendszert sokáig úgy tekintették, mint „a” geometriát. Manapság mindenesetre eukleidészi geometriának nevezik (illetve hagyományosan: euklideszi geometriának), megkülönböztetésképpen az úgynevezett nem euklideszi geometriáktól, amelyeket a 19. századtól vezettek be. Az új geometriák Eukleidész ötödik posztulátumának a vizsgálatából nőttek ki, amely a matematika történetének legtöbbet tanulmányozott axiómája. Ezek a kutatások legfőképpen azt célozták, hogy bebizonyítsák a viszonylag bonyolult ötödik posztulátumot az első négy használatával.

A párhuzamossági axióma (egy egyenessel egy rajta kívüli pontból csak egy párhuzamos egyenes húzható) elhagyásával vagy más axiómával való helyettesítésével ellentmondásmentes geometriához juthatunk – például a Bolyai János és Lobacsevszkij nevéhez fűződő hiperbolikus geometriához.

Forrás: wikipedia; Kép: Google;